Abstract:The remarkable achievements of Large Language Models (LLMs) have captivated the attention of both academia and industry, transcending their initial role in dialogue generation. The utilization of LLMs as intermediary agents in various tasks has yielded promising results, sparking a wave of innovation in artificial intelligence. Building on these breakthroughs, we introduce a novel approach that integrates the agent paradigm into the Out-of-distribution (OOD) detection task, aiming to enhance its robustness and adaptability. Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process. These agents function as dynamic observers and communication hubs, interacting with both In-distribution (ID) labels and data inputs to form vector triangle relationships. This triangular framework offers a more nuanced approach than the traditional binary relationship, allowing for better separation and identification of ID and OOD inputs. Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods in a diverse array of real-world scenarios.