Abstract:Generating images from hand-drawings is a crucial and fundamental task in content creation. The translation is difficult as there exist infinite possibilities and the different users usually expect different outcomes. Therefore, we propose a unified framework supporting a three-dimensional control over the image synthesis from sketches and strokes based on diffusion models. Users can not only decide the level of faithfulness to the input strokes and sketches, but also the degree of realism, as the user inputs are usually not consistent with the real images. Qualitative and quantitative experiments demonstrate that our framework achieves state-of-the-art performance while providing flexibility in generating customized images with control over shape, color, and realism. Moreover, our method unleashes applications such as editing on real images, generation with partial sketches and strokes, and multi-domain multi-modal synthesis.
Abstract:Current image-to-image translation methods formulate the task with conditional generation models, leading to learning only the recolorization or regional changes as being constrained by the rich structural information provided by the conditional contexts. In this work, we propose introducing the vector quantization technique into the image-to-image translation framework. The vector quantized content representation can facilitate not only the translation, but also the unconditional distribution shared among different domains. Meanwhile, along with the disentangled style representation, the proposed method further enables the capability of image extension with flexibility in both intra- and inter-domains. Qualitative and quantitative experiments demonstrate that our framework achieves comparable performance to the state-of-the-art image-to-image translation and image extension methods. Compared to methods for individual tasks, the proposed method, as a unified framework, unleashes applications combining image-to-image translation, unconditional generation, and image extension altogether. For example, it provides style variability for image generation and extension, and equips image-to-image translation with further extension capabilities.