Abstract:Whole-slide image (WSI) preprocessing, typically comprising tissue detection followed by patch extraction, is foundational to AI-driven computational pathology workflows. This remains a major computational bottleneck as existing tools either rely on inaccurate heuristic thresholding for tissue detection, or adopt AI-based approaches trained on limited-diversity data that operate at the patch level, incurring substantial computational complexity. We present AtlasPatch, an efficient and scalable slide preprocessing framework for accurate tissue detection and high-throughput patch extraction with minimal computational overhead. AtlasPatch's tissue detection module is trained on a heterogeneous and semi-manually annotated dataset of ~30,000 WSI thumbnails, using efficient fine-tuning of the Segment-Anything model. The tool extrapolates tissue masks from thumbnails to full-resolution slides to extract patch coordinates at user-specified magnifications, with options to stream patches directly into common image encoders for embedding or store patch images, all efficiently parallelized across CPUs and GPUs. We assess AtlasPatch across segmentation precision, computational complexity, and downstream multiple-instance learning, matching state-of-the-art performance while operating at a fraction of their computational cost. AtlasPatch is open-source and available at https://github.com/AtlasAnalyticsLab/AtlasPatch.




Abstract:Lens flare is a common image artifact that can significantly degrade image quality and affect the performance of computer vision systems due to a strong light source pointing at the camera. This survey provides a comprehensive overview of the multifaceted domain of lens flare, encompassing its underlying physics, influencing factors, types, and characteristics. It delves into the complex optics of flare formation, arising from factors like internal reflection, scattering, diffraction, and dispersion within the camera lens system. The diverse categories of flare are explored, including scattering, reflective, glare, orb, and starburst types. Key properties such as shape, color, and localization are analyzed. The numerous factors impacting flare appearance are discussed, spanning light source attributes, lens features, camera settings, and scene content. The survey extensively covers the wide range of methods proposed for flare removal, including hardware optimization strategies, classical image processing techniques, and learning-based methods using deep learning. It not only describes pioneering flare datasets created for training and evaluation purposes but also how they were created. Commonly employed performance metrics such as PSNR, SSIM, and LPIPS are explored. Challenges posed by flare's complex and data-dependent characteristics are highlighted. The survey provides insights into best practices, limitations, and promising future directions for flare removal research. Reviewing the state-of-the-art enables an in-depth understanding of the inherent complexities of the flare phenomenon and the capabilities of existing solutions. This can inform and inspire new innovations for handling lens flare artifacts and improving visual quality across various applications.