Abstract:The topic of speech separation involves separating mixed speech with multiple overlapping speakers into several streams, with each stream containing speech from only one speaker. Many highly effective models have emerged and proliferated rapidly over time. However, the size and computational load of these models have also increased accordingly. This is a disaster for the community, as researchers need more time and computational resources to reproduce and compare existing models. In this paper, we propose U-mamba-net: a lightweight Mamba-based U-style model for speech separation in complex environments. Mamba is a state space sequence model that incorporates feature selection capabilities. U-style network is a fully convolutional neural network whose symmetric contracting and expansive paths are able to learn multi-resolution features. In our work, Mamba serves as a feature filter, alternating with U-Net. We test the proposed model on Libri2mix. The results show that U-Mamba-Net achieves improved performance with quite low computational cost.
Abstract:The potential of deep learning in clinical speech processing is immense, yet the hurdles of limited and imbalanced clinical data samples loom large. This article addresses these challenges by showcasing the utilization of automatic speech recognition and self-supervised learning representations, pre-trained on extensive datasets of normal speech. This innovative approach aims to estimate voice quality of patients with impaired vocal systems. Experiments involve checks on PVQD dataset, covering various causes of vocal system damage in English, and a Japanese dataset focusing on patients with Parkinson's disease before and after undergoing subthalamic nucleus deep brain stimulation (STN-DBS) surgery. The results on PVQD reveal a notable correlation (>0.8 on PCC) and an extraordinary accuracy (<0.5 on MSE) in predicting Grade, Breathy, and Asthenic indicators. Meanwhile, progress has been achieved in predicting the voice quality of patients in the context of STN-DBS.