Abstract:The hearing loss of almost half a billion people is commonly treated with hearing aids. However, current hearing aids often do not work well in real-world noisy environments. We present a deep learning based denoising system that runs in real time on iPhone 7 and Samsung Galaxy S10 (25ms algorithmic latency). The denoised audio is streamed to the hearing aid, resulting in a total delay of around 75ms. In tests with hearing aid users having moderate to severe hearing loss, our denoising system improves audio across three tests: 1) listening for subjective audio ratings, 2) listening for objective speech intelligibility, and 3) live conversations in a noisy environment for subjective ratings. Subjective ratings increase by more than 40%, for both the listening test and the live conversation compared to a fitted hearing aid as a baseline. Speech reception thresholds, measuring speech understanding in noise, improve by 1.6 dB SRT. Ours is the first denoising system that is implemented on a mobile device, streamed directly to users' hearing aids using only a single channel as audio input while improving user satisfaction on all tested aspects, including speech intelligibility. This includes overall preference of the denoised and streamed signal over the hearing aid, thereby accepting the higher latency for the significant improvement in speech understanding.
Abstract:Almost half a billion people world-wide suffer from disabling hearing loss. While hearing aids can partially compensate for this, a large proportion of users struggle to understand speech in situations with background noise. Here, we present a deep learning-based algorithm that selectively suppresses noise while maintaining speech signals. The algorithm restores speech intelligibility for hearing aid users to the level of control subjects with normal hearing. It consists of a deep network that is trained on a large custom database of noisy speech signals and is further optimized by a neural architecture search, using a novel deep learning-based metric for speech intelligibility. The network achieves state-of-the-art denoising on a range of human-graded assessments, generalizes across different noise categories and - in contrast to classic beamforming approaches - operates on a single microphone. The system runs in real time on a laptop, suggesting that large-scale deployment on hearing aid chips could be achieved within a few years. Deep learning-based denoising therefore holds the potential to improve the quality of life of millions of hearing impaired people soon.