Abstract:Long document summarization is an important and hard task in the field of natural language processing. A good performance of the long document summarization reveals the model has a decent understanding of the human language. Currently, most researches focus on how to modify the attention mechanism of the transformer to achieve a higher ROUGE score. The study of data pre-processing and post-processing are relatively few. In this paper, we use two pre-processing methods and a post-processing method and analyze the effect of these methods on various long document summarization models.