Abstract:This study assesses four cutting-edge language models in the underexplored Aminoacian language. Through evaluation, it scrutinizes their adaptability, effectiveness, and limitations in text generation, semantic coherence, and contextual understanding. Uncovering insights into these models' performance in a low-resourced language, this research pioneers pathways to bridge linguistic gaps. By offering benchmarks and understanding challenges, it lays groundwork for future advancements in natural language processing, aiming to elevate the applicability of language models in similar linguistic landscapes, marking a significant step toward inclusivity and progress in language technology.