Abstract:Few-shot font generation, especially for Chinese calligraphy fonts, is a challenging and ongoing problem. With the help of prior knowledge that is mainly based on glyph consistency assumptions, some recently proposed methods can synthesize high-quality Chinese glyph images. However, glyphs in calligraphy font styles often do not meet these assumptions. To address this problem, we propose a novel model, DeepCalliFont, for few-shot Chinese calligraphy font synthesis by integrating dual-modality generative models. Specifically, the proposed model consists of image synthesis and sequence generation branches, generating consistent results via a dual-modality representation learning strategy. The two modalities (i.e., glyph images and writing sequences) are properly integrated using a feature recombination module and a rasterization loss function. Furthermore, a new pre-training strategy is adopted to improve the performance by exploiting large amounts of uni-modality data. Both qualitative and quantitative experiments have been conducted to demonstrate the superiority of our method to other state-of-the-art approaches in the task of few-shot Chinese calligraphy font synthesis. The source code can be found at https://github.com/lsflyt-pku/DeepCalliFont.
Abstract:Automatic generation of high-quality Chinese fonts from a few online training samples is a challenging task, especially when the amount of samples is very small. Existing few-shot font generation methods can only synthesize low-resolution glyph images that often possess incorrect topological structures or/and incomplete strokes. To address the problem, this paper proposes FontTransformer, a novel few-shot learning model, for high-resolution Chinese glyph image synthesis by using stacked Transformers. The key idea is to apply the parallel Transformer to avoid the accumulation of prediction errors and utilize the serial Transformer to enhance the quality of synthesized strokes. Meanwhile, we also design a novel encoding scheme to feed more glyph information and prior knowledge to our model, which further enables the generation of high-resolution and visually-pleasing glyph images. Both qualitative and quantitative experimental results demonstrate the superiority of our method compared to other existing approaches in the few-shot Chinese font synthesis task.