Abstract:Accurate vehicle acceleration prediction is critical for intelligent driving control and energy efficiency management, particularly in environments with complex driving behavior dynamics. This paper proposes a general short-term vehicle acceleration prediction framework that jointly models environmental influence and individual driving behavior. The framework adopts a dual input design by incorporating environmental sequences, constructed from historical traffic variables such as percentile-based speed and acceleration statistics of multiple vehicles at specific spatial locations, capture group-level driving behavior influenced by the traffic environment. In parallel, individual driving behavior sequences represent motion characteristics of the target vehicle prior to the prediction point, reflecting personalized driving styles. These two inputs are processed using an LSTM Seq2Seq model enhanced with an attention mechanism, enabling accurate multi-step acceleration prediction. To demonstrate the effectiveness of the proposed method, an empirical study was conducted using high resolution radar video fused trajectory data collected from the exit section of the Guangzhou Baishi Tunnel. Drivers were clustered into three categories conservative, moderate, and aggressive based on key behavioral indicators, and a dedicated prediction model was trained for each group to account for driver heterogeneity.Experimental results show that the proposed method consistently outperforms four baseline models, yielding a 10.9% improvement in accuracy with the inclusion of historical traffic variables and a 33% improvement with driver classification. Although prediction errors increase with forecast distance, incorporating environment- and behavior-aware features significantly enhances model robustness.
Abstract:This study presents machine learning models that forecast and categorize lost circulation severity preemptively using a large class imbalanced drilling dataset. We demonstrate reproducible core techniques involved in tackling a large drilling engineering challenge utilizing easily interpretable machine learning approaches. We utilized a 65,000+ records data with class imbalance problem from Azadegan oilfield formations in Iran. Eleven of the dataset's seventeen parameters are chosen to be used in the classification of five lost circulation events. To generate classification models, we used six basic machine learning algorithms and four ensemble learning methods. Linear Discriminant Analysis (LDA), Logistic Regression (LR), Support Vector Machines (SVM), Classification and Regression Trees (CART), k-Nearest Neighbors (KNN), and Gaussian Naive Bayes (GNB) are the six fundamental techniques. We also used bagging and boosting ensemble learning techniques in the investigation of solutions for improved predicting performance. The performance of these algorithms is measured using four metrics: accuracy, precision, recall, and F1-score. The F1-score weighted to represent the data imbalance is chosen as the preferred evaluation criterion. The CART model was found to be the best in class for identifying drilling fluid circulation loss events with an average weighted F1-score of 0.9904 and standard deviation of 0.0015. Upon application of ensemble learning techniques, a Random Forest ensemble of decision trees showed the best predictive performance. It identified and classified lost circulation events with a perfect weighted F1-score of 1.0. Using Permutation Feature Importance (PFI), the measured depth was found to be the most influential factor in accurately recognizing lost circulation events while drilling.