Faculty of Information Technology, Beijing University of Technology, Beijing, China, Beijing Key Laboratory of Trusted Computing, Beijing, China, National Engineering Laboratory for Critical Technologies of Information Security Classified Protection, Beijing, China
Abstract:Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity between infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. \noindent Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.
Abstract:Image classification is an important task in the field of machine learning and image processing. However, the usually used classification method --- the K Nearest-Neighbor algorithm has high complexity, because its two main processes: similarity computing and searching are time-consuming. Especially in the era of big data, the problem is prominent when the amount of images to be classified is large. In this paper, we try to use the powerful parallel computing ability of quantum computers to optimize the efficiency of image classification. The scheme is based on quantum K Nearest-Neighbor algorithm. Firstly, the feature vectors of images are extracted on classical computers. Then the feature vectors are inputted into a quantum superposition state, which is used to achieve parallel computing of similarity. Next, the quantum minimum search algorithm is used to speed up searching process for similarity. Finally, the image is classified by quantum measurement. The complexity of the quantum algorithm is only O((kM)^(1/2)), which is superior to the classical algorithms. Moreover, the measurement step is executed only once to ensure the validity of the scheme. The experimental results show that, the classification accuracy is 83.1% on Graz-01 dataset and 78% on Caltech-101 dataset, which is close to existing classical algorithms. Hence, our quantum scheme has a good classification performance while greatly improving the efficiency.