Abstract:Social media platforms provide valuable insights into mental health trends by capturing user-generated discussions on conditions such as depression, anxiety, and suicidal ideation. Machine learning (ML) and deep learning (DL) models have been increasingly applied to classify mental health conditions from textual data, but selecting the most effective model involves trade-offs in accuracy, interpretability, and computational efficiency. This study evaluates multiple ML models, including logistic regression, random forest, and LightGBM, alongside deep learning architectures such as ALBERT and Gated Recurrent Units (GRUs), for both binary and multi-class classification of mental health conditions. Our findings indicate that ML and DL models achieve comparable classification performance on medium-sized datasets, with ML models offering greater interpretability through variable importance scores, while DL models are more robust to complex linguistic patterns. Additionally, ML models require explicit feature engineering, whereas DL models learn hierarchical representations directly from text. Logistic regression provides the advantage of capturing both positive and negative associations between features and mental health conditions, whereas tree-based models prioritize decision-making power through split-based feature selection. This study offers empirical insights into the advantages and limitations of different modeling approaches and provides recommendations for selecting appropriate methods based on dataset size, interpretability needs, and computational constraints.
Abstract:The global rise in depression necessitates innovative detection methods for early intervention. Social media provides a unique opportunity to identify depression through user-generated posts. This systematic review evaluates machine learning (ML) models for depression detection on social media, focusing on biases and methodological challenges throughout the ML lifecycle. A search of PubMed, IEEE Xplore, and Google Scholar identified 47 relevant studies published after 2010. The Prediction model Risk Of Bias ASsessment Tool (PROBAST) was utilized to assess methodological quality and risk of bias. Significant biases impacting model reliability and generalizability were found. There is a predominant reliance on Twitter (63.8%) and English-language content (over 90%), with most studies focusing on users from the United States and Europe. Non-probability sampling methods (approximately 80%) limit representativeness. Only 23% of studies explicitly addressed linguistic nuances like negations, crucial for accurate sentiment analysis. Inconsistent hyperparameter tuning was observed, with only 27.7% properly tuning models. About 17% did not adequately partition data into training, validation, and test sets, risking overfitting. While 74.5% used appropriate evaluation metrics for imbalanced data, others relied on accuracy without addressing class imbalance, potentially skewing results. Reporting transparency varied, often lacking critical methodological details. These findings highlight the need to diversify data sources, standardize preprocessing protocols, ensure consistent model development practices, address class imbalance, and enhance reporting transparency. By overcoming these challenges, future research can develop more robust and generalizable ML models for depression detection on social media, contributing to improved mental health outcomes globally.
Abstract:We provide a detailed overview of various approaches to word segmentation of Asian Languages, specifically Chinese, Korean, and Japanese languages. For each language, approaches to deal with word segmentation differs. We also include our analysis about certain advantages and disadvantages to each method. In addition, there is room for future work in this field.