Abstract:High peak-to-average power ratio (PAPR) has long posed a challenge for multi-carrier systems, impacting amplifier efficiency and overall system performance. This paper introduces dynamic angle fractional Fourier division multiplexing (DA-FrFDM), an innovative multi-carrier system that effectively reduces PAPR for both QAM and Gaussian signals with minimal signaling overhead. DA-FrFDM leverages the fractional Fourier domain to balance PAPR characteristics between the time and frequency domains, achieving significant PAPR reduction while preserving signal quality. Furthermore, DA-FrFDM refines signal processing and enables one-tap equalization in the fractional Fourier domain through the simple multiplication of time-domain signals by a quadratic phase sequence. Our results show that DA-FrFDM not only outperforms existing PAPR reduction techniques but also retains efficient inter-carrier interference (ICI) mitigation capabilities in doubly dispersive channels.
Abstract:As one of the major branches of automatic speech recognition, attention-based models greatly improves the feature representation ability of the model. In particular, the multi-head mechanism is employed in the attention, hoping to learn speech features of more aspects in different attention subspaces. For speech recognition of complex languages, on the one hand, a small head size will lead to an obvious shortage of learnable aspects. On the other hand, we need to reduce the dimension of each subspace to keep the size of the overall feature space unchanged when we increase the number of heads, which will significantly weaken the ability to represent the feature of each subspace. Therefore, this paper explores how to use a small attention subspace to represent complete speech features while ensuring many heads. In this work we propose a novel neural network architecture, namely, pyramid multi-branch fusion DCNN with multi-head self-attention. The proposed architecture is inspired by Dilated Convolution Neural Networks (DCNN), it uses multiple branches with DCNN to extract the feature of the input speech under different receptive fields. To reduce the number of parameters, every two branches are merged until all the branches are merged into one. Thus, its shape is like a pyramid rotated 90 degrees. We demonstrate that on Aishell-1, a widely used Mandarin speech dataset, our model achieves a character error rate (CER) of 6.45% on the test sets.