Abstract:Social scientists are often interested in using ordinal indicators to estimate latent traits that change over time. Frequently, this is done with item response theoretic (IRT) models that describe the relationship between those latent traits and observed indicators. We combine recent advances in Bayesian nonparametric IRT, which makes minimal assumptions on shapes of item response functions, and Gaussian process time series methods to capture dynamic structures in latent traits from longitudinal observations. We propose a generalized dynamic Gaussian process item response theory (GD-GPIRT) as well as a Markov chain Monte Carlo sampling algorithm for estimation of both latent traits and response functions. We evaluate GD-GPIRT in simulation studies against baselines in dynamic IRT, and apply it to various substantive studies, including assessing public opinions on economy environment and congressional ideology related to abortion debate.
Abstract:We develop a novel measurement framework based on a Gaussian process coregionalization model to address a long-lasting debate in psychometrics: whether psychological features like personality share a common structure across the population, vary uniquely for individuals, or some combination. We propose the idiographic personality Gaussian process (IPGP) framework, an intermediate model that accommodates both shared trait structure across a population and "idiographic" deviations for individuals. IPGP leverages the Gaussian process coregionalization model to handle the grouped nature of battery responses, but adjusted to non-Gaussian ordinal data. We further exploit stochastic variational inference for efficient latent factor estimation required for idiographic modeling at scale. Using synthetic and real data, we show that IPGP improves both prediction of actual responses and estimation of individualized factor structures relative to existing benchmarks. In a third study, we show that IPGP also identifies unique clusters of personality taxonomies in real-world data, displaying great potential in advancing individualized approaches to psychological diagnosis and treatment.