Abstract:The task of lane detection involves identifying the boundaries of driving areas. Recognizing lanes with complex and variable geometric structures remains a challenge. In this paper, we introduce a new lane detection framework named ElasticLaneNet (Elastic-interaction-energy guided Lane detection Network). A novel and flexible way of representing lanes, namely, implicit representation is proposed. The training strategy considers predicted lanes as moving curves that being attracted to the ground truth guided by an elastic interaction energy based loss function (EIE loss). An auxiliary feature refinement (AFR) module is designed to gather information from different layers. The method performs well in complex lane scenarios, including those with large curvature, weak geometric features at intersections, complicated cross lanes, Y-shapes lanes, dense lanes, etc. We apply our approach on three datasets: SDLane, CULane, and TuSimple. The results demonstrate the exceptional performance of our method, with the state-of-the-art results on the structure-diversity dataset SDLane, achieving F1-score of 89.51, Recall rate of 87.50, and Precision of 91.61.
Abstract:Segmentation is a pixel-level classification of images. The accuracy and fast inference speed of image segmentation are crucial for autonomous driving safety. Fine and complex geometric objects are the most difficult but important recognition targets in traffic scene, such as pedestrians, traffic signs and lanes. In this paper, a simple and efficient geometry-sensitive energy-based loss function is proposed to Convolutional Neural Network (CNN) for multi-class segmentation on real-time traffic scene understanding. To be specific, the elastic interaction energy (EIE) between two boundaries will drive the prediction moving toward the ground truth until completely overlap. The EIE loss function is incorporated into CNN to enhance accuracy on fine-scale structure segmentation. In particular, small or irregularly shaped objects can be identified more accurately, and discontinuity issues on slender objects can be improved. Our approach can be applied to different segmentation-based problems, such as urban scene segmentation and lane detection. We quantitatively and qualitatively analyze our method on three traffic datasets, including urban scene data Cityscapes, lane data TuSimple and CULane. The results show that our approach consistently improves performance, especially when using real-time, lightweight networks as the backbones, which is more suitable for autonomous driving.