Abstract:Current simulators lack the ability to accurately model integrated environments that encompass sea, air, and land. To address this gap, we introduce Aerial-Aquatic Manipulators (AAMs) in SEa, Air, and Land Simulator (SEALS), a comprehensive and photorealistic simulator designed for AAMs to operate and learn in these diverse environments. The development of AAM-SEALS tackles several significant challenges, including the creation of integrated controllers for flying, swimming, and manipulation, and the high-fidelity simulation of aerial dynamics and hydrodynamics leveraging particle physics. Our evaluation demonstrates smooth operation and photorealistic transitions across air, water, and their interfaces. We quantitatively validate the fidelity of particle-based hydrodynamics by comparing position-tracking errors across real-world and simulated systems. AAM-SEALS promises to benefit a broad range of robotics communities, including robot learning, aerial robotics, underwater robotics, mobile manipulation, and robotic simulators. We will open-source our code and data to foster the advancement of research in these fields. Please access our project website at: https: //aam-seals.github.io/aam-seals-v1/
Abstract:The work introduces a bio-inspired leader-follower system based on an innovative mechanism proposed as software latching that aims to improve collaboration and coordination between a leader agent and the associated autonomous followers. The system utilizes software latching to establish real-time communication and synchronization between the leader and followers. A layered architecture is proposed, encompassing perception, decision-making, and control modules. Challenges such as uncertainty, dynamic environments, and communication latency are addressed using Deep learning and real-time data processing pipelines. The follower robot is equipped with sensors and communication modules that enable it to track and trace the agent of interest or avoid obstacles. The followers track the leader and dynamically avoid obstacles while maintaining a safe distance from it. The experimental results demonstrate the proposed system's effectiveness, making it a promising solution for achieving success in tasks that demand multi-robot systems capable of navigating complex dynamic environments.