Abstract:Music-text multimodal systems have enabled new approaches to Music Information Research (MIR) applications such as audio-to-text and text-to-audio retrieval, text-based song generation, and music captioning. Despite the reported success, little effort has been put into evaluating the musical knowledge of Large Language Models (LLM). In this paper, we demonstrate that LLMs suffer from 1) prompt sensitivity, 2) inability to model negation (e.g. 'rock song without guitar'), and 3) sensitivity towards the presence of specific words. We quantified these properties as a triplet-based accuracy, evaluating the ability to model the relative similarity of labels in a hierarchical ontology. We leveraged the Audioset ontology to generate triplets consisting of an anchor, a positive (relevant) label, and a negative (less relevant) label for the genre and instruments sub-tree. We evaluated the triplet-based musical knowledge for six general-purpose Transformer-based models. The triplets obtained through this methodology required filtering, as some were difficult to judge and therefore relatively uninformative for evaluation purposes. Despite the relatively high accuracy reported, inconsistencies are evident in all six models, suggesting that off-the-shelf LLMs need adaptation to music before use.
Abstract:Music two-tower multimodal systems integrate audio and text modalities into a joint audio-text space, enabling direct comparison between songs and their corresponding labels. These systems enable new approaches for classification and retrieval, leveraging both modalities. Despite the promising results they have shown for zero-shot classification and retrieval tasks, closer inspection of the embeddings is needed. This paper evaluates the inherent zero-shot properties of joint audio-text spaces for the case-study of instrument recognition. We present an evaluation and analysis of two-tower systems for zero-shot instrument recognition and a detailed analysis of the properties of the pre-joint and joint embeddings spaces. Our findings suggest that audio encoders alone demonstrate good quality, while challenges remain within the text encoder or joint space projection. Specifically, two-tower systems exhibit sensitivity towards specific words, favoring generic prompts over musically informed ones. Despite the large size of textual encoders, they do not yet leverage additional textual context or infer instruments accurately from their descriptions. Lastly, a novel approach for quantifying the semantic meaningfulness of the textual space leveraging an instrument ontology is proposed. This method reveals deficiencies in the systems' understanding of instruments and provides evidence of the need for fine-tuning text encoders on musical data.