Abstract:Continual learning requires the model to learn multiple tasks sequentially. In continual learning, the model should possess the ability to maintain its performance on old tasks (stability) and the ability to adapt to new tasks continuously (plasticity). Recently, parameter-efficient fine-tuning (PEFT), which involves freezing a pre-trained model and injecting a small number of learnable parameters to adapt to downstream tasks, has gained increasing popularity in continual learning. Although existing continual learning methods based on PEFT have demonstrated superior performance compared to those not based on PEFT, most of them do not consider how to eliminate the interference of the new task on the old tasks, which inhibits the model from making a good trade-off between stability and plasticity. In this work, we propose a new PEFT method, called interference-free low-rank adaptation (InfLoRA), for continual learning. InfLoRA injects a small number of parameters to reparameterize the pre-trained weights and shows that fine-tuning these injected parameters is equivalent to fine-tuning the pre-trained weights within a subspace. Furthermore, InfLoRA designs this subspace to eliminate the interference of the new task on the old tasks, making a good trade-off between stability and plasticity. Experimental results show that InfLoRA outperforms existing state-of-the-art continual learning methods on multiple datasets.
Abstract:Online continual learning, especially when task identities and task boundaries are unavailable, is a challenging continual learning setting. One representative kind of methods for online continual learning is replay-based methods, in which a replay buffer called memory is maintained to keep a small part of past samples for overcoming catastrophic forgetting. When tackling with online continual learning, most existing replay-based methods focus on single-label problems in which each sample in the data stream has only one label. But multi-label problems may also happen in the online continual learning setting in which each sample may have more than one label. In the online setting with multi-label samples, the class distribution in data stream is typically highly imbalanced, and it is challenging to control class distribution in memory since changing the number of samples belonging to one class may affect the number of samples belonging to other classes. But class distribution in memory is critical for replay-based memory to get good performance, especially when the class distribution in data stream is highly imbalanced. In this paper, we propose a simple but effective method, called optimizing class distribution in memory (OCDM), for multi-label online continual learning. OCDM formulates the memory update mechanism as an optimization problem and updates the memory by solving this problem. Experiments on two widely used multi-label datasets show that OCDM can control the class distribution in memory well and can outperform other state-of-the-art methods.