Abstract:High-quality annotations are essential for object detection models, but ensuring label accuracy - especially for bounding boxes - remains both challenging and costly. This paper introduces ClipGrader, a novel approach that leverages vision-language models to automatically assess the accuracy of bounding box annotations. By adapting CLIP (Contrastive Language-Image Pre-training) to evaluate both class label correctness and spatial precision of bounding box, ClipGrader offers an effective solution for grading object detection labels. Tested on modified object detection datasets with artificially disturbed bounding boxes, ClipGrader achieves 91% accuracy on COCO with a 1.8% false positive rate. Moreover, it maintains 87% accuracy with a 2.1% false positive rate when trained on just 10% of the COCO data. ClipGrader also scales effectively to larger datasets such as LVIS, achieving 79% accuracy across 1,203 classes. Our experiments demonstrate ClipGrader's ability to identify errors in existing COCO annotations, highlighting its potential for dataset refinement. When integrated into a semi-supervised object detection (SSOD) model, ClipGrader readily improves the pseudo label quality, helping achieve higher mAP (mean Average Precision) throughout the training process. ClipGrader thus provides a scalable AI-assisted tool for enhancing annotation quality control and verifying annotations in large-scale object detection datasets.
Abstract:In this paper, we design novel interactive deep learning methods to improve semantic interactions in visual analytics applications. The ability of semantic interaction to infer analysts' precise intents during sensemaking is dependent on the quality of the underlying data representation. We propose the $\text{DeepSI}_{\text{finetune}}$ framework that integrates deep learning into the human-in-the-loop interactive sensemaking pipeline, with two important properties. First, deep learning extracts meaningful representations from raw data, which improves semantic interaction inference. Second, semantic interactions are exploited to fine-tune the deep learning representations, which then further improves semantic interaction inference. This feedback loop between human interaction and deep learning enables efficient learning of user- and task-specific representations. To evaluate the advantage of embedding the deep learning within the semantic interaction loop, we compare $\text{DeepSI}_{\text{finetune}}$ against a state-of-the-art but more basic use of deep learning as only a feature extractor pre-processed outside of the interactive loop. Results of two complementary studies, a human-centered qualitative case study and an algorithm-centered simulation-based quantitative experiment, show that $\text{DeepSI}_{\text{finetune}}$ more accurately captures users' complex mental models with fewer interactions.