Abstract:Current Multimodal Sentiment Analysis (MSA) and Emotion Recognition in Conversations (ERC) methods based on pre-trained language models exhibit two primary limitations: 1) Once trained for MSA and ERC tasks, these pre-trained language models lose their original generalized capabilities. 2) They demand considerable computational resources. As the size of pre-trained language models continues to grow, training larger multimodal sentiment analysis models using previous approaches could result in unnecessary computational cost. In response to this challenge, we propose \textbf{M}ultimodal \textbf{S}entiment Analysis and \textbf{E}motion Recognition \textbf{Adapter} (MSE-Adapter), a lightweight and adaptable plugin. This plugin enables a large language model (LLM) to carry out MSA or ERC tasks with minimal computational overhead (only introduces approximately 2.6M to 2.8M trainable parameters upon the 6/7B models), while preserving the intrinsic capabilities of the LLM. In the MSE-Adapter, the Text-Guide-Mixer (TGM) module is introduced to establish explicit connections between non-textual and textual modalities through the Hadamard product. This allows non-textual modalities to better align with textual modalities at the feature level, promoting the generation of higher-quality pseudo tokens. Extensive experiments were conducted on four public English and Chinese datasets using consumer-grade GPUs and open-source LLMs (Qwen-1.8B, ChatGLM3-6B-base, and LLaMA2-7B) as the backbone. The results demonstrate the effectiveness of the proposed plugin. The code will be released on GitHub after a blind review.
Abstract:Electrocardiogram (ECG) signal analysis represents a pivotal technique in the diagnosis of cardiovascular diseases. Although transformer-based models have made significant progress in ECG classification, they exhibit inefficiencies in the inference phase. The issue is primarily attributable to the secondary computational complexity of Transformer's self-attention mechanism. particularly when processing lengthy sequences. To address this issue, we propose a novel model, ECGMamba, which employs a bidirectional state-space model (BiSSM) to enhance classification efficiency. ECGMamba is based on the innovative Mamba-based block, which incorporates a range of time series modeling techniques to enhance performance while maintaining the efficiency of inference. The experimental results on two publicly available ECG datasets demonstrate that ECGMamba effectively balances the effectiveness and efficiency of classification, achieving competitive performance. This study not only contributes to the body of knowledge in the field of ECG classification but also provides a new research path for efficient and accurate ECG signal analysis. This is of guiding significance for the development of diagnostic models for cardiovascular diseases.