Abstract:This paper addresses the Sensor Network Localization (SNL) problem using received signal strength. The SNL is formulated as an Euclidean Distance Matrix Completion (EDMC) problem under the unit ball sample model. Using the Burer-Monteiro factorization type cost function, the EDMC is solved by Riemannian conjugate gradient with Hager-Zhang line search method on a quotient manifold. A "rank reduction" preprocess is proposed for proper initialization and to achieve global convergence with high probability. Simulations on a synthetic scene show that our approach attains better localization accuracy and is computationally efficient compared to several baseline methods. Characterization of a small local basin of attraction around the global optima of the s-stress function under Bernoulli sampling rule and incoherence matrix completion framework is conducted for the first time. Theoretical result conjectures that the Euclidean distance problem with a structure-less sample mask can be effectively handled using spectral initialization followed by vanilla first-order methods. This preliminary analysis, along with the aforementioned numerical accomplishments, provides insights into revealing the landscape of the s-stress function and may stimulate the design of simpler algorithms to tackle the non-convex formulation of general EDMC problems.
Abstract:Analog feature extraction is a power-efficient and re-emerging signal processing paradigm for implementing the front-end feature extractor in on device keyword-spotting systems. Despite its power efficiency and re-emergence, there is little consensus on what values the architectural parameters of its critical block, the analog filterbank, should be set to, even though they strongly influence power consumption. Towards building consensus and approaching fundamental power consumption limits, we find via simulation that through careful selection of its architectural parameters, the power of a typical state-of-the-art analog filterbank could be reduced by 33.6x, while sacrificing only 1.8% in downstream 10-word keyword spotting accuracy through a back-end neural network.