Abstract:In this work, we propose a factor graph optimization (FGO) framework to simultaneously solve the calibration problem for Ultra-WideBand (UWB) anchors and the robot localization problem. Calibrating UWB anchors manually can be time-consuming and even impossible in emergencies or those situations without special calibration tools. Therefore, automatic estimation of the anchor positions becomes a necessity. The proposed method enables the creation of a soft sensor providing the position information of the anchors in a UWB network. This soft sensor requires only UWB and LiDAR measurements measured from a moving robot. The proposed FGO framework is suitable for the calibration of an extendable large UWB network. Moreover, the anchor calibration problem and robot localization problem can be solved simultaneously, which saves time for UWB network deployment. The proposed framework also helps to avoid artificial errors in the UWB-anchor position estimation and improves the accuracy and robustness of the robot-pose. The experimental results of the robot localization using LiDAR and a UWB network in a 3D environment are discussed, demonstrating the performance of the proposed method. More specifically, the anchor calibration problem with four anchors and the robot localization problem can be solved simultaneously and automatically within 30 seconds by the proposed framework. The supplementary video and codes can be accessed via https://github.com/LiuxhRobotAI/Simultaneous_calibration_localization.
Abstract:In this work, we propose a high-order regularization method to solve the ill-conditioned problems in robot localization. Numerical solutions to robot localization problems are often unstable when the problems are ill-conditioned. A typical way to solve ill-conditioned problems is regularization, and a classical regularization method is the Tikhonov regularization. It is shown that the Tikhonov regularization can be seen as a low-order case of our method. We find that the proposed method is superior to the Tikhonov regularization in approximating some ill-conditioned inverse problems, such as robot localization problems. The proposed method overcomes the over-smoothing problem in the Tikhonov regularization as it can use more than one term in the approximation of the matrix inverse, and an explanation for the over-smoothing of the Tikhonov regularization is given. Moreover, one a priori criterion which improves the numerical stability of the ill-conditioned problem is proposed to obtain an optimal regularization matrix. As most of the regularization solutions are biased, we also provide two bias-correction techniques for the proposed high-order regularization. The simulation and experiment results using a sensor network in a 3D environment are discussed, demonstrating the performance of the proposed method.