Abstract:This paper presents a deep reinforcement learning AI that uses sound as the input on the DareFightingICE platform at the DareFightingICE Competition in IEEE CoG 2022. In this work, an AI that only uses sound as the input is called blind AI. While state-of-the-art AIs rely mostly on visual or structured observations provided by their environments, learning to play games from only sound is still new and thus challenging. We propose different approaches to process audio data and use the Proximal Policy Optimization algorithm for our blind AI. We also propose to use our blind AI in evaluation of sound designs submitted to the competition and define three metrics for this task. The experimental results show the effectiveness of not only our blind AI but also the proposed three metrics.
Abstract:This paper presents a new competition -- at the 2022 IEEE Conference on Games (CoG) -- called DareFightingICE Competition. The competition has two tracks: a sound design track and an AI track. The game platform for this competition is also called DareFightingICE, a fighting game platform. DareFightingICE is a sound-design-enhanced version of FightingICE, used earlier in a competition at CoG until 2021 to promote artificial intelligence (AI) research in fighting games. In the sound design track, participants compete for the best sound design, given the default sound design of DareFightingICE as a sample. Participants of the AI track are asked to develop their AI algorithm that controls a character given only sound as the input (blind AI) to fight against their opponent; a sample deep-learning blind AI will be provided by us. Our means to maximize the synergy between the two tracks are also described. This competition serves to come up with effective sound designs for visually impaired players, a group in the gaming community which has been mostly ignored. To the best of our knowledge, DareFightingICE Competition is the first of its kind within and outside of CoG.