Abstract:A novel approach to expedite design optimization of nonlinear beam dynamics in storage rings is proposed and demonstrated in this study. At each iteration, a neural network surrogate model is used to suggest new trial solutions in a multi-objective optimization task. The surrogate model is then updated with the new solutions, and this process is repeated until the final optimized solution is obtained. We apply this approach to optimize the nonlinear beam dynamics of the SPEAR3 storage ring, where sextupole knobs are adjusted to simultaneously improve the dynamic aperture and the momentum aperture. The approach is shown to converge to the Pareto front considerably faster than the genetic and particle swarm algorithms.
Abstract:We present a multi-objective optimization algorithm that uses Gaussian process (GP) regression-based models to generate or select trial solutions in a multi-generation iterative procedure. In each generation, a surrogate model is constructed for each objective function with the sample data. The models are used to evaluate solutions and to select the ones with a high potential before they are evaluated on the actual system. Since the trial solutions selected by the GP models tend to have better performance than other methods that only rely on random operations, the new algorithm has much better efficiency in exploring the parameter space. Simulations with multiple test cases show that the new algorithm has a substantially higher convergence speed that the NSGA-II and PSO algorithms.