Abstract:Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagnose the plaques and stenosis in blood vessels. This article proposes a new video segmentation framework that can extract the clearest and most comprehensive coronary angiography images from a video sequence, thereby helping physicians to better observe the condition of blood vessels. This framework combines a 3D convolutional layer to extract spatial--temporal information from a video sequence and a 2D CE--Net to accomplish the segmentation task of an image sequence. The input is a few continuous frames of angiographic video, and the output is a mask of segmentation result. From the results of segmentation and extraction, we can get good segmentation results despite the poor quality of coronary angiography video sequences.
Abstract:The reconstruction of three-dimensional models of coronary arteries is of great significance for the localization, evaluation and diagnosis of stenosis and plaque in the arteries, as well as for the assisted navigation of interventional surgery. In the clinical practice, physicians use a few angles of coronary angiography to capture arterial images, so it is of great practical value to perform 3D reconstruction directly from coronary angiography images. However, this is a very difficult computer vision task due to the complex shape of coronary blood vessels, as well as the lack of data set and key point labeling. With the rise of deep learning, more and more work is being done to reconstruct 3D models of human organs from medical images using deep neural networks. We propose an adversarial and generative way to reconstruct three dimensional coronary artery models, from two different views of angiographic images of coronary arteries. With 3D fully supervised learning and 2D weakly supervised learning schemes, we obtained reconstruction accuracies that outperform state-of-art techniques.