Abstract:The confrontation of modern intelligence is to some extent a non-complete information confrontation, where neither side has access to sufficient information to detect the deployment status of the adversary, and then it is necessary for the intelligence to complete information retrieval adaptively and develop confrontation strategies in the confrontation environment. In this paper, seven tank robots, including TestRobot, are organized for 1V 1 independent and mixed confrontations. The main objective of this paper is to verify the effectiveness of TestRobot's Zero-sum Game Alpha-Beta pruning algorithm combined with the estimation of the opponent's next moment motion position under the game round strategy and the effect of releasing the intelligent body's own bullets in advance to hit the opponent. Finally, based on the results of the confrontation experiments, the natural property differences of the tank intelligence are expressed by plotting histograms of 1V1 independent confrontations and radar plots of mixed confrontations.
Abstract:To address the problem of imperfect confrontation strategy caused by the lack of information of game environment in the simulation of non-complete information dynamic countermeasure modeling for intelligent game, the hierarchical analysis game strategy of confrontation model based on OODA ring (Observation, Orientation, Decision, Action) theory is proposed. At the same time, taking into account the trend of unmanned future warfare, NetLogo software simulation is used to construct a dynamic derivation of the confrontation between two tanks. In the validation process, the OODA loop theory is used to describe the operation process of the complex system between red and blue sides, and the four-step cycle of observation, judgment, decision and execution is carried out according to the number of armor of both sides, and then the OODA loop system adjusts the judgment and decision time coefficients for the next confrontation cycle according to the results of the first cycle. Compared with traditional simulation methods that consider objective factors such as loss rate and support rate, the OODA-loop-based hierarchical game analysis can analyze the confrontation situation more comprehensively.
Abstract:Since the outbreak of the COVID-19 in December 2019, medical protective equipment such as disposable medical masks and KN95 masks have become essential resources for the public. Enterprises in all sectors of society have also transformed the production of medical masks. After the outbreak, how to choose the right time to produce medical protective masks, and what type of medical masks to produce will play a positive role in preventing and controlling the epidemic in a short time. In this regard, the evolutionary game competition analysis will be conducted through the relevant data of disposable medical masks and KN95 masks to determine the appropriate nodes for the production of corresponding mask types. After the research and analysis of the production strategy of mask types, it has a positive effect on how to guide the resumption of work and production.
Abstract:Recent work has shown that the activation function of the convolutional neural network can meet the Lipschitz condition, then the corresponding convolutional neural network structure can be constructed according to the scale of the data set, and the data set can be trained more deeply, more accurately and more effectively. In this article, we have accepted the experimental results and introduced the core block N-Gauss, N-Gauss, and Swish (Conv1, Conv2, FC1) neural network structure design to train MNIST, CIFAR10, and CIFAR100 respectively. Experiments show that N-Gauss gives full play to the main role of nonlinear modeling of activation functions, so that deep convolutional neural networks have hierarchical nonlinear mapping learning capabilities. At the same time, the training ability of N-Gauss on simple one-dimensional channel small data sets is equivalent to the performance of ReLU and Swish.