Abstract:This paper addresses a major challenge to historical research on the 19th century. Large quantities of sources have become digitally available for the first time, while extraction techniques are lagging behind. Therefore, we researched machine learning (ML) models to recognise and extract complex data structures in a high-value historical primary source, the Schematismus. It records every single person in the Habsburg civil service above a certain hierarchical level between 1702 and 1918 and documents the genesis of the central administration over two centuries. Its complex and intricate structure as well as its enormous size have so far made any more comprehensive analysis of the administrative and social structure of the later Habsburg Empire on the basis of this source impossible. We pursued two central objectives: Primarily, the improvement of the OCR quality, for which we considered an improved structure recognition to be essential; in the further course, it turned out that this also made the extraction of the data structure possible. We chose Faster R-CNN as base for the ML architecture for structure recognition. In order to obtain the required amount of training data quickly and economically, we synthesised Hof- und Staatsschematismus-style data, which we used to train our model. The model was then fine-tuned with a smaller set of manually annotated historical source data. We then used Tesseract-OCR, which was further optimised for the style of our documents, to complete the combined structure extraction and OCR process. Results show a significant decrease in the two standard parameters of OCR-performance, WER and CER (where lower values are better). Combined structure detection and fine-tuned OCR improved CER and WER values by remarkable 71.98 percent (CER) respectively 52.49 percent (WER).