Abstract:Gaussian graphical models are widely used to represent conditional dependence among random variables. In this paper, we propose a novel estimator for data arising from a group of Gaussian graphical models that are themselves dependent. A motivating example is that of modeling gene expression collected on multiple tissues from the same individual: here the multivariate outcome is affected by dependencies acting not only at the level of the specific tissues, but also at the level of the whole body; existing methods that assume independence among graphs are not applicable in this case. To estimate multiple dependent graphs, we decompose the problem into two graphical layers: the systemic layer, which affects all outcomes and thereby induces cross- graph dependence, and the category-specific layer, which represents graph-specific variation. We propose a graphical EM technique that estimates both layers jointly, establish estimation consistency and selection sparsistency of the proposed estimator, and confirm by simulation that the EM method is superior to a simple one-step method. We apply our technique to mouse genomics data and obtain biologically plausible results.
Abstract:We describe a simple, efficient, permutation based procedure for selecting the penalty parameter in the LASSO. The procedure, which is intended for applications where variable selection is the primary focus, can be applied in a variety of structural settings, including generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of three real data sets in which permutation selection is compared with cross-validation (CV), the Bayesian information criterion (BIC), and a selection method based on recently developed testing procedures for the LASSO.