Abstract:Neural Networks have been identified as powerful tools for the study of complex systems. A noteworthy example is the Neural Network Differential Equation (NN DE) solver, which can provide functional approximations to the solutions of a wide variety of differential equations. However, there is a lack of work on the role precise error quantification can play in their predictions: most variants focus on ambiguous and/or global measures of performance like the loss function. We address this in the context of dynamical system NN DE solvers, leveraging their \textit{learnt} information to develop more accurate and efficient solvers, while still pursuing an unsupervised approach that does not rely on external tools or data. We achieve this via methods that precisely quantify NN DE solver errors at local scales, thus allowing the user the capacity for efficient and targeted error correction. We exemplify the utility of our methods by testing them on a nonlinear and a chaotic system each.
Abstract:Koopman operator theory, a powerful framework for discovering the underlying dynamics of nonlinear dynamical systems, was recently shown to be intimately connected with neural network training. In this work, we take the first steps in making use of this connection. As Koopman operator theory is a linear theory, a successful implementation of it in evolving network weights and biases offers the promise of accelerated training, especially in the context of deep networks, where optimization is inherently a non-convex problem. We show that Koopman operator theory methods allow for accurate predictions of the weights and biases of a feedforward, fully connected deep network over a non-trivial range of training time. During this time window, we find that our approach is at least 10x faster than gradient descent based methods, in line with the results expected from our complexity analysis. We highlight additional methods by which our results can be expanded to broader classes of networks and larger time intervals, which shall be the focus of future work in this novel intersection between dynamical systems and neural network theory.