Abstract:The proliferation of machine learning models in diverse clinical applications has led to a growing need for high-fidelity, medical image training data. Such data is often scarce due to cost constraints and privacy concerns. Alleviating this burden, medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images based on existing sets of real medical images. However, the exact image set size required to efficiently train such a GAN is unclear. In this work, we experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images, given the dataset's distribution of image complexities. We analyze statistical metrics based on delentropy, an image complexity measure rooted in Shannon's entropy in information theory. For our pipeline, we conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes. Across both GANs, general performance improved with increasing training set size but suffered with increasing complexity.