Abstract:Symmetry detection and morphological classification of anatomical structures play pivotal roles in medical image analysis. The application of kinematic surface fitting, a method for characterizing shapes through parametric stationary velocity fields, has shown promising results in computer vision and computer-aided design. However, existing research has predominantly focused on first order rotational velocity fields, which may not adequately capture the intricate curved and twisted nature of anatomical structures. To address this limitation, we propose an innovative approach utilizing a second order velocity field for kinematic surface fitting. This advancement accommodates higher rotational shape complexity and improves the accuracy of symmetry detection in anatomical structures. We introduce a robust fitting technique and validate its performance through testing on synthetic shapes and real anatomical structures. Our method not only enables the detection of curved rotational symmetries (core lines) but also facilitates morphological classification by deriving intrinsic shape parameters related to curvature and torsion. We illustrate the usefulness of our technique by categorizing the shape of human cochleae in terms of the intrinsic velocity field parameters. The results showcase the potential of our method as a valuable tool for medical image analysis, contributing to the assessment of complex anatomical shapes.
Abstract:The cochlea, the auditory part of the inner ear, is a spiral-shaped organ with large morphological variability. An individualized assessment of its shape is essential for clinical applications related to tonotopy and cochlear implantation. To unambiguously reference morphological parameters, reliable recognition of the cochlear modiolar axis in computed tomography (CT) images is required. The conventional method introduces measurement uncertainties, as it is based on manually selected and difficult to identify landmarks. Herein, we present an algorithm for robust modiolar axis detection in clinical CT images. We define the modiolar axis as the rotation component of the kinematic spiral motion inherent in the cochlear shape. For surface fitting, we use a compact shape representation in a 7-dimensional kinematic parameter space based on extended Pl\"ucker coordinates. It is the first time such a kinematic representation is used for shape analysis in medical images. Robust surface fitting is achieved with an adapted approximate maximum likelihood method assuming a Student-t distribution, enabling axis detection even in partially available surface data. We verify the algorithm performance on a synthetic data set with cochlear surface subsets. In addition, we perform an experimental study with four experts in 23 human cochlea CT data sets to compare the automated detection with the manually found axes. Axes found from co-registered high resolution micro-CT scans are used for reference. Our experiments show that the algorithm reduces the alignment error providing more reliable modiolar axis detection for clinical and research applications.