Abstract:Combining sports and machine learning involves leveraging ML algorithms and techniques to extract insight from sports-related data such as player statistics, game footage, and other relevant information. However, datasets related to figure skating in the literature focus primarily on element classification and are currently unavailable or exhibit only limited access, which greatly raise the entry barrier to developing visual sports technology for it. Moreover, when using such data to help athletes improve their skills, we find they are very coarse-grained: they work for learning what an element is, but they are poorly suited to learning whether the element is good or bad. Here we propose air time detection, a novel motion analysis task, the goal of which is to accurately detect the duration of the air time of a jump. We present YourSkatingCoach, a large, novel figure skating dataset which contains 454 videos of jump elements, the detected skater skeletons in each video, along with the gold labels of the start and ending frames of each jump, together as a video benchmark for figure skating. In addition, although this type of task is often viewed as classification, we cast it as a sequential labeling problem and propose a Transformer-based model to calculate the duration. Experimental results show that the proposed model yields a favorable results for a strong baseline. To further verify the generalizability of the fine-grained labels, we apply the same process to other sports as cross-sports tasks but for coarse-grained task action classification. Here we fine-tune the classification to demonstrate that figure skating, as it contains the essential body movements, constitutes a strong foundation for adaptation to other sports.
Abstract:Many people engage in self-directed sports training at home but lack the real-time guidance of professional coaches, making them susceptible to injuries or the development of incorrect habits. In this paper, we propose a novel application framework called MAAIG(Motion Analysis And Instruction Generation). It can generate embedding vectors for each frame based on user-provided sports action videos. These embedding vectors are associated with the 3D skeleton of each frame and are further input into a pretrained T5 model. Ultimately, our model utilizes this information to generate specific sports instructions. It has the capability to identify potential issues and provide real-time guidance in a manner akin to professional coaches, helping users improve their sports skills and avoid injuries.