Abstract:In this paper, we demonstrate how the state-of-the-art machine learning and text mining techniques can be used to build effective social media-based substance use detection systems. Since a substance use ground truth is difficult to obtain on a large scale, to maximize system performance, we explore different feature learning methods to take advantage of a large amount of unsupervised social media data. We also demonstrate the benefit of using multi-view unsupervised feature learning to combine heterogeneous user information such as Facebook `"likes" and "status updates" to enhance system performance. Based on our evaluation, our best models achieved 86% AUC for predicting tobacco use, 81% for alcohol use and 84% for drug use, all of which significantly outperformed existing methods. Our investigation has also uncovered interesting relations between a user's social media behavior (e.g., word usage) and substance use.
Abstract:In economics and psychology, delay discounting is often used to characterize how individuals choose between a smaller immediate reward and a larger delayed reward. People with higher delay discounting rate (DDR) often choose smaller but more immediate rewards (a "today person"). In contrast, people with a lower discounting rate often choose a larger future rewards (a "tomorrow person"). Since the ability to modulate the desire of immediate gratification for long term rewards plays an important role in our decision-making, the lower discounting rate often predicts better social, academic and health outcomes. In contrast, the higher discounting rate is often associated with problematic behaviors such as alcohol/drug abuse, pathological gambling and credit card default. Thus, research on understanding and moderating delay discounting has the potential to produce substantial societal benefits.