Abstract:Spiking Neural Networks (SNNs) offer a biologically inspired alternative to conventional artificial neural networks, with potential advantages in power efficiency due to their event-driven computation. Despite their promise, SNNs have yet to achieve competitive performance on complex visual tasks, such as image classification. This study introduces a novel SNN architecture designed to enhance computational efficacy and task accuracy. The architecture features optimized pulse modules that facilitate the processing of spatio-temporal patterns in visual data, aiming to reconcile the computational demands of high-level vision tasks with the energy-efficient processing of SNNs. Our evaluations on standard image classification benchmarks indicate that the proposed architecture narrows the performance gap with traditional neural networks, providing insights into the design of more efficient and capable neuromorphic computing systems.
Abstract:Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise. This paper introduces EEGEncoder, a deep learning framework that employs transformer models to surmount these limitations. Our innovative multi-scale fusion architecture captures both immediate and extended temporal features, thereby enhancing MI task classification precision. EEGEncoder's key innovations include the inaugural application of transformers in MI-EEG signal classification, a mixup data augmentation strategy for bolstered generalization, and a multi-task learning approach for refined predictive accuracy. When tested on the BCI Competition IV dataset 2a, our model established a new benchmark with its state-of-the-art performance. EEGEncoder signifies a substantial advancement in BCI technology, offering a robust, efficient, and effective tool for transforming thought into action, with the potential to significantly enhance the quality of life for those dependent on BCIs.