Abstract:In the last twenty years, Structure from Motion (SfM) has been a constant research hotspot in the fields of photogrammetry, computer vision, robotics etc., whereas real-time performance is just a recent topic of growing interest. This work builds upon the original on-the-fly SfM (Zhan et al., 2024) and presents an updated version with three new advancements to get better 3D from what you capture: (i) real-time image matching is further boosted by employing the Hierarchical Navigable Small World (HNSW) graphs, thus more true positive overlapping image candidates are faster identified; (ii) a self-adaptive weighting strategy is proposed for robust hierarchical local bundle adjustment to improve the SfM results; (iii) multiple agents are included for supporting collaborative SfM and seamlessly merge multiple 3D reconstructions into a complete 3D scene when commonly registered images appear. Various comprehensive experiments demonstrate that the proposed SfM method (named on-the-fly SfMv2) can generate more complete and robust 3D reconstructions in a high time-efficient way. Code is available at http://yifeiyu225.github.io/on-the-flySfMv2.github.io/.
Abstract:Accurately recommending candidate news articles to users is a basic challenge faced by personalized news recommendation systems. Traditional methods are usually difficult to grasp the complex semantic information in news texts, resulting in unsatisfactory recommendation results. Besides, these traditional methods are more friendly to active users with rich historical behaviors. However, they can not effectively solve the "long tail problem" of inactive users. To address these issues, this research presents a novel general framework that combines Large Language Models (LLM) and Knowledge Graphs (KG) into semantic representations of traditional methods. In order to improve semantic understanding in complex news texts, we use LLMs' powerful text understanding ability to generate news representations containing rich semantic information. In addition, our method combines the information about news entities and mines high-order structural information through multiple hops in KG, thus alleviating the challenge of long tail distribution. Experimental results demonstrate that compared with various traditional models, the framework significantly improves the recommendation effect. The successful integration of LLM and KG in our framework has established a feasible path for achieving more accurate personalized recommendations in the news field. Our code is available at https://github.com/Xuan-ZW/LKPNR.