Abstract:To support mechanism online learning and facilitate digital twin development for biomanufacturing processes, this paper develops an efficient Bayesian inference approach for partially observed enzymatic stochastic reaction network (SRN), a fundamental building block of multi-scale bioprocess mechanistic model. To tackle the critical challenges brought by the nonlinear stochastic differential equations (SDEs)-based mechanistic model with partially observed state and having measurement error, an interpretable Bayesian updating linear noise approximation (LNA) metamodel, incorporating the structure information of the mechanistic model, is proposed to approximate the likelihood of observations. Then, an efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of MCMC. The empirical study demonstrates that the proposed approach has a promising performance.