Abstract:Over the last decade, e-learning has revolutionized how students learn by providing them access to quality education whenever and wherever they want. However, students often get distracted because of various reasons, which affect the learning capacity to a great extent. Many researchers have been trying to improve the quality of online education, but we need a holistic approach to address this issue. This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes. We explore various image processing techniques and machine learning algorithms throughout this study. We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization. We can use the generated feedback as a heuristic value to analyze the overall performance of students as well as the teaching standards of the lecturers.
Abstract:Over the last decade, there has been a spike in criminal activity all around the globe. According to the Indian police department, vehicle theft is one of the least solved offenses, and almost 19% of all recorded cases are related to motor vehicle theft. To overcome these adversaries, we propose a real-time vehicle surveillance system, which detects and tracks the suspect vehicle using the CCTV video feed. The proposed system extracts various attributes of the vehicle such as Make, Model, Color, License plate number, and type of the license plate. Various image processing and deep learning algorithms are employed to meet the objectives of the proposed system. The extracted features can be used as evidence to report violations of law. Although the system uses more parameters, it is still able to make real time predictions with minimal latency and accuracy loss.