Solarillion Foundation, Chennai, India
Abstract:Over the last decade, e-learning has revolutionized how students learn by providing them access to quality education whenever and wherever they want. However, students often get distracted because of various reasons, which affect the learning capacity to a great extent. Many researchers have been trying to improve the quality of online education, but we need a holistic approach to address this issue. This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes. We explore various image processing techniques and machine learning algorithms throughout this study. We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization. We can use the generated feedback as a heuristic value to analyze the overall performance of students as well as the teaching standards of the lecturers.
Abstract:Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia worldwide, with 2% of the population affected. It is associated with an increased risk of strokes, heart failure and other heart-related complications. Monitoring at-risk individuals and detecting asymptomatic AF could result in considerable public health benefits, as individuals with asymptomatic AF could take preventive measures with lifestyle changes. With increasing affordability to wearables, personalized health care is becoming more accessible. These personalized healthcare solutions require accurate classification of bio-signals while being computationally inexpensive. By making inferences on-device, we avoid issues inherent to cloud-based systems such as latency and network connection dependency. We propose an efficient pipeline for real-time Atrial Fibrillation Detection with high accuracy that can be deployed in ultra-edge devices. The feature engineering employed in this research catered to optimizing the resource-efficient classifier used in the proposed pipeline, which was able to outperform the best performing standard ML model by $10^5\times$ in terms of memory footprint with a mere trade-off of 2% classification accuracy. We also obtain higher accuracy of approximately 6% while consuming 403$\times$ lesser memory and being 5.2$\times$ faster compared to the previous state-of-the-art (SoA) embedded implementation.