Abstract:Machine learning and optimisation techniques (MLOPT) hold significant potential to accelerate the decarbonisation of industrial systems by enabling data-driven operational improvements. However, the practical application of MLOPT in industrial settings is often hindered by a lack of domain compliance and system-specific consistency, resulting in suboptimal solutions with limited real-world applicability. To address this challenge, we propose a novel human-in-the-loop (HITL) constraint-based optimisation framework that integrates domain expertise with data-driven methods, ensuring solutions are both technically sound and operationally feasible. We demonstrate the efficacy of this framework through a case study focused on enhancing the thermal efficiency and reducing the turbine heat rate of a 660 MW supercritical coal-fired power plant. By embedding domain knowledge as constraints within the optimisation process, our approach yields solutions that align with the plant's operational patterns and are seamlessly integrated into its control systems. Empirical validation confirms a mean improvement in thermal efficiency of 0.64\% and a mean reduction in turbine heat rate of 93 kJ/kWh. Scaling our analysis to 59 global coal power plants with comparable capacity and fuel type, we estimate a cumulative lifetime reduction of 156.4 million tons of carbon emissions. These results underscore the transformative potential of our HITL-MLOPT framework in delivering domain-compliant, implementable solutions for industrial decarbonisation, offering a scalable pathway to mitigate the environmental impact of coal-based power generation worldwide.