Abstract:Spectral clustering methods have gained widespread recognition for their effectiveness in clustering high-dimensional data. Among these techniques, constrained spectral clustering has emerged as a prominent approach, demonstrating enhanced performance by integrating pairwise constraints. However, the application of such constraints to semidefinite spectral clustering, a variant that leverages semidefinite programming to optimize clustering objectives, remains largely unexplored. In this paper, we introduce a novel framework for seamlessly integrating pairwise constraints into semidefinite spectral clustering. Our methodology systematically extends the capabilities of semidefinite spectral clustering to capture complex data structures, thereby addressing real-world clustering challenges more effectively. Additionally, we extend this framework to encompass both active and self-taught learning scenarios, further enhancing its versatility and applicability. Empirical studies conducted on well-known datasets demonstrate the superiority of our proposed framework over existing spectral clustering methods, showcasing its robustness and scalability across diverse datasets and learning settings. By bridging the gap between constrained learning and semidefinite spectral clustering, our work contributes to the advancement of spectral clustering techniques, offering researchers and practitioners a versatile tool for addressing complex clustering challenges in various real-world applications. Access to the data, code, and experimental results is provided for further exploration (https://github.com/swarupbehera/SCCCS).
Abstract:Devising player-specific strategies in cricket necessitates a meticulous understanding of each player's unique strengths and weaknesses. Nevertheless, the absence of a definitive computational approach to extract such insights from cricket players poses a significant challenge. This paper seeks to address this gap by establishing computational models designed to extract the rules governing player strengths and weaknesses, thereby facilitating the development of tailored strategies for individual players. The complexity of this endeavor lies in several key areas: the selection of a suitable dataset, the precise definition of strength and weakness rules, the identification of an appropriate learning algorithm, and the validation of the derived rules. To tackle these challenges, we propose the utilization of unstructured data, specifically cricket text commentary, as a valuable resource for constructing comprehensive strength and weakness rules for cricket players. We also introduce computationally feasible definitions for the construction of these rules, and present a dimensionality reduction technique for the rule-building process. In order to showcase the practicality of this approach, we conduct an in-depth analysis of cricket player strengths and weaknesses using a vast corpus of more than one million text commentaries. Furthermore, we validate the constructed rules through two distinct methodologies: intrinsic and extrinsic. The outcomes of this research are made openly accessible, including the collected data, source code, and results for over 250 cricket players, which can be accessed at https://bit.ly/2PKuzx8.