Abstract:In orthogonal time frequency space (OTFS) modulation, Zak transform approach is a natural approach for converting information symbols multiplexed in the DD domain directly to time domain for transmission, and vice versa at the receiver. Past research on OTFS has primarily considered a two-step approach where DD domain symbols are first converted to time-frequency domain which are then converted to time domain for transmission, and vice versa at the receiver. The Zak transform approach can offer performance and complexity benefits compared to the two-step approach. This paper presents an early investigation on the bit error performance of OTFS realized using discrete Zak transform (DZT). We develop a compact DD domain input-output relation for DZT-OTFS using matrix decomposition that is valid for both integer and fractional delay-Dopplers. We analyze the bit error performance of DZT-OTFS using pairwise error probability analysis and simulations. Simulation results show that 1) both DZT-OTFS and two-step OTFS perform better than OFDM, and 2) DZT-OTFS achieves better performance compared to two-step OTFS over a wide range of Doppler spreads.
Abstract:Reconfigurable intelligent surfaces (RIS) and orthogonal time-frequency space (OTFS) modulation have gained attention in recent wireless research. RIS technology aids communication by reflecting the incident electromagnetic waves towards the receiver, and OTFS modulation is effective in high-Doppler channels. This paper presents an early investigation of RIS-aided OTFS in high-Doppler channels. We derive the end-to-end delay-Doppler (DD) domain input-output relation of a RIS-aided OTFS system, considering rectangular pulses and fractional delay-Doppler values. We also consider a Zak receiver for RIS-aided OTFS that converts the received time-domain signal to DD domain in one step using Zak transform, and derive its end-to-end input-output relation. Our simulation results show that $i)$ RIS-aided OTFS performs better than OTFS without RIS, $ii)$ Zak receiver performs better than a two-step receiver, and $iii)$ RIS-aided OTFS achieves superior performance compared to RIS-aided OFDM.
Abstract:In this paper, we analyze the performance of orthogonal time frequency space (OTFS) modulation with antenna selection at the receiver, where $n_s$ out of $n_r$ receive antennas with maximum channel Frobenius norms in the delay-Doppler (DD) domain are selected. Single-input multiple-output OTFS (SIMO-OTFS), multiple-input multiple-output OTFS (MIMO-OTFS), and space-time coded OTFS (STC-OTFS) systems with receive antenna selection (RAS) are considered. We consider these systems without and with phase rotation. Our diversity analysis results show that, with no phase rotation, SIMO-OTFS and MIMO-OTFS systems with RAS are rank deficient, and therefore they do not extract the full receive diversity as well as the diversity present in the DD domain. Also, Alamouti coded STC-OTFS system with RAS and no phase rotation extracts the full transmit diversity, but it fails to extract the DD diversity. On the other hand, SIMO-OTFS and STC-OTFS systems with RAS become full-ranked when phase rotation is used, because of which they extract the full spatial as well as the DD diversity present in the system. Also, when phase rotation is used, MIMO-OTFS systems with RAS extract the full DD diversity, but they do not extract the full receive diversity because of rank deficiency. Simulation results are shown to validate the analytically predicted diversity performance.