Abstract:Deep learning models have achieved great success in automating skin lesion diagnosis. However, the ethnic disparity in these models' predictions needs to be addressed before deploying them. We introduce a novel approach, PatchAlign, to enhance skin condition image classification accuracy and fairness by aligning with clinical text representations of skin conditions. PatchAlign uses Graph Optimal Transport (GOT) Loss as a regularizer to perform cross-domain alignment. The representations obtained are robust and generalize well across skin tones, even with limited training samples. To reduce the effect of noise and artifacts in clinical dermatology images, we propose a learnable Masked Graph Optimal Transport for cross-domain alignment that further improves fairness metrics. We compare our model to the state-of-the-art FairDisCo on two skin lesion datasets with different skin types: Fitzpatrick17k and Diverse Dermatology Images (DDI). PatchAlign enhances the accuracy of skin condition image classification by 2.8% (in-domain) and 6.2% (out-domain) on Fitzpatrick17k, and 4.2% (in-domain) on DDI compared to FairDisCo. Additionally, it consistently improves the fairness of true positive rates across skin tones. The source code for the implementation is available at the following GitHub repository: https://github.com/aayushmanace/PatchAlign24, enabling easy reproduction and further experimentation.
Abstract:The traditional framework of federated learning (FL) requires each client to re-train their models in every iteration, making it infeasible for resource-constrained mobile devices to train deep-learning (DL) models. Split learning (SL) provides an alternative by using a centralized server to offload the computation of activations and gradients for a subset of the model but suffers from problems of slow convergence and lower accuracy. In this paper, we implement PFSL, a new framework of distributed split learning where a large number of thin clients perform transfer learning in parallel, starting with a pre-trained DL model without sharing their data or labels with a central server. We implement a lightweight step of personalization of client models to provide high performance for their respective data distributions. Furthermore, we evaluate performance fairness amongst clients under a work fairness constraint for various scenarios of non-i.i.d. data distributions and unequal sample sizes. Our accuracy far exceeds that of current SL algorithms and is very close to that of centralized learning on several real-life benchmarks. It has a very low computation cost compared to FL variants and promises to deliver the full benefits of DL to extremely thin, resource-constrained clients.