Abstract:Measuring a qubit is a fundamental yet error prone operation in quantum computing. These errors can stem from various sources such as crosstalk, spontaneous state-transitions, and excitation caused by the readout pulse. In this work, we utilize an integrated approach to deploy neural networks (NN) on to field programmable gate arrays (FPGA). We demonstrate that it is practical to design and implement a fully connected neural network accelerator for frequency-multiplexed readout balancing computational complexity with low latency requirements without significant loss in accuracy. The neural network is implemented by quantization of weights, activation functions, and inputs. The hardware accelerator performs frequency-multiplexed readout of 5 superconducting qubits in less than 50 ns on RFSoC ZCU111 FPGA which is first of its kind in the literature. These modules can be implemented and integrated in existing Quantum control and readout platforms using a RFSoC ZCU111 ready for experimental deployment.
Abstract:Image similarity is a core concept in Image Analysis due to its extensive application in computer vision, image processing, and pattern recognition. The objective of our study is to evaluate Quasi-Euclidean metric as an image similarity measure and analyze how it fares against the existing standard ways like SSIM and Euclidean metric. In this paper, we analyzed the similarity between two images from our own novice dataset and assessed its performance against the Euclidean distance metric and SSIM. We also present experimental results along with evidence indicating that our proposed implementation when applied to our novice dataset, furnished different results than standard metrics in terms of effectiveness and accuracy. In some cases, our methodology projected remarkable performance and it is also interesting to note that our implementation proves to be a step ahead in recognizing similarity when compared to