Abstract:In this work we addressed the challenge of multi-class anomaly classification in Video Capsule Endoscopy (VCE)[1] with a variety of deep learning models, ranging from custom CNNs to advanced transformer architectures. The purpose is to correctly classify diverse gastrointestinal disorders, which is critical for increasing diagnostic efficiency in clinical settings. We started with a proprietary CNN and improved performance with ResNet[7] for better feature extraction, followed by Vision Transformer (ViT)[2] to capture global dependencies. Multiscale Vision Transformer (MViT)[6] improved hierarchical feature extraction, while Dual Attention Vision Transformer (DaViT)[4] delivered cutting-edge results by combining spatial and channel attention methods. This methodology enabled us to improve model accuracy across a wide range of criteria, greatly surpassing older methods.