Abstract:The success of an agent mediated e-market system lies in the underlying reputation management system to improve the quality of services in an information asymmetric e-market. Reputation provides an operatable metric for establishing trustworthiness between mutually unknown online entities. Reputation systems encourage honest behaviour and discourage malicious behaviour of participating agents in the e-market. A dynamic reputation model would provide virtually instantaneous knowledge about the changing e-market environment and would utilise Internets' capacity for continuous interactivity for reputation computation. This paper proposes a dynamic reputation framework using reinforcement learning and fuzzy set theory that ensures judicious use of information sharing for inter-agent cooperation. This framework is sensitive to the changing parameters of e-market like the value of transaction and the varying experience of agents with the purpose of improving inbuilt defense mechanism of the reputation system against various attacks so that e-market reaches an equilibrium state and dishonest agents are weeded out of the market.