Abstract:Understanding human behaviour in decision problems and strategic interactions has wide-ranging applications in economics, psychology, and artificial intelligence. Game theory offers a robust foundation for this understanding, based on the idea that individuals aim to maximize a utility function. However, the exact factors influencing strategy choices remain elusive. While traditional models try to explain human behaviour as a function of the outcomes of available actions, recent experimental research reveals that linguistic content significantly impacts decision-making, thus prompting a paradigm shift from outcome-based to language-based utility functions. This shift is more urgent than ever, given the advancement of generative AI, which has the potential to support humans in making critical decisions through language-based interactions. We propose sentiment analysis as a fundamental tool for this shift and take an initial step by analyzing 61 experimental instructions from the dictator game, an economic game capturing the balance between self-interest and the interest of others, which is at the core of many social interactions. Our meta-analysis shows that sentiment analysis can explain human behaviour beyond economic outcomes. We discuss future research directions. We hope this work sets the stage for a novel game theoretical approach that emphasizes the importance of language in human decisions.
Abstract:Generative artificial intelligence holds enormous potential to revolutionize decision-making processes, from everyday to high-stake scenarios. However, as many decisions carry social implications, for AI to be a reliable assistant for decision-making it is crucial that it is able to capture the balance between self-interest and the interest of others. We investigate the ability of three of the most advanced chatbots to predict dictator game decisions across 78 experiments with human participants from 12 countries. We find that only GPT-4 (not Bard nor Bing) correctly captures qualitative behavioral patterns, identifying three major classes of behavior: self-interested, inequity-averse, and fully altruistic. Nonetheless, GPT-4 consistently overestimates other-regarding behavior, inflating the proportion of inequity-averse and fully altruistic participants. This bias has significant implications for AI developers and users.