CWI
Abstract:We present seven experiments exploring gender biases in GPT. Initially, GPT was asked to generate demographics of a potential writer of twenty phrases containing feminine stereotypes and twenty with masculine stereotypes. Results show a strong asymmetry, with stereotypically masculine sentences attributed to a female more often than vice versa. For example, the sentence "I love playing fotbal! Im practicing with my cosin Michael" was constantly assigned by ChatGPT to a female writer. This phenomenon likely reflects that while initiatives to integrate women in traditionally masculine roles have gained momentum, the reverse movement remains relatively underdeveloped. Subsequent experiments investigate the same issue in high-stakes moral dilemmas. GPT-4 finds it more appropriate to abuse a man to prevent a nuclear apocalypse than to abuse a woman. This bias extends to other forms of violence central to the gender parity debate (abuse), but not to those less central (torture). Moreover, this bias increases in cases of mixed-sex violence for the greater good: GPT-4 agrees with a woman using violence against a man to prevent a nuclear apocalypse but disagrees with a man using violence against a woman for the same purpose. Finally, these biases are implicit, as they do not emerge when GPT-4 is directly asked to rank moral violations. These results highlight the necessity of carefully managing inclusivity efforts to prevent unintended discrimination.
Abstract:Over the last two decades, a growing body of experimental research has provided evidence that linguistic frames influence human behaviour in economic games, beyond the economic consequences of the available actions. This article proposes a novel framework that transcends the traditional confines of outcome-based preference models. According to the LENS model, the Linguistic description of the decision problem triggers Emotional responses and suggests potential Norms of behaviour, which then interact to shape an individual's Strategic choice. The article reviews experimental evidence that supports each path of the LENS model. Furthermore, it identifies and discusses several critical research questions that arise from this model, pointing towards avenues for future inquiry.
Abstract:Understanding human behaviour in decision problems and strategic interactions has wide-ranging applications in economics, psychology, and artificial intelligence. Game theory offers a robust foundation for this understanding, based on the idea that individuals aim to maximize a utility function. However, the exact factors influencing strategy choices remain elusive. While traditional models try to explain human behaviour as a function of the outcomes of available actions, recent experimental research reveals that linguistic content significantly impacts decision-making, thus prompting a paradigm shift from outcome-based to language-based utility functions. This shift is more urgent than ever, given the advancement of generative AI, which has the potential to support humans in making critical decisions through language-based interactions. We propose sentiment analysis as a fundamental tool for this shift and take an initial step by analyzing 61 experimental instructions from the dictator game, an economic game capturing the balance between self-interest and the interest of others, which is at the core of many social interactions. Our meta-analysis shows that sentiment analysis can explain human behaviour beyond economic outcomes. We discuss future research directions. We hope this work sets the stage for a novel game theoretical approach that emphasizes the importance of language in human decisions.
Abstract:Generative artificial intelligence holds enormous potential to revolutionize decision-making processes, from everyday to high-stake scenarios. However, as many decisions carry social implications, for AI to be a reliable assistant for decision-making it is crucial that it is able to capture the balance between self-interest and the interest of others. We investigate the ability of three of the most advanced chatbots to predict dictator game decisions across 78 experiments with human participants from 12 countries. We find that only GPT-4 (not Bard nor Bing) correctly captures qualitative behavioral patterns, identifying three major classes of behavior: self-interested, inequity-averse, and fully altruistic. Nonetheless, GPT-4 consistently overestimates other-regarding behavior, inflating the proportion of inequity-averse and fully altruistic participants. This bias has significant implications for AI developers and users.
Abstract:We review the literature on models that try to explain human behavior in social interactions described by normal-form games with monetary payoffs. We start by covering social and moral preferences. We then focus on the growing body of research showing that people react to the language in which actions are described, especially when it activates moral concerns. We conclude by arguing that behavioral economics is in the midst of a paradigm shift towards language-based preferences, which will require an exploration of new models and experimental setups.
Abstract:In the last few decades, numerous experiments have shown that humans do not always behave so as to maximize their material payoff. Cooperative behavior when non-cooperation is a dominant strategy (with respect to the material payoffs) is particularly puzzling. Here we propose a novel approach to explain cooperation, assuming what Halpern and Pass call translucent players. Typically, players are assumed to be opaque, in the sense that a deviation by one player in a normal-form game does not affect the strategies used by other players. But a player may believe that if he switches from one strategy to another, the fact that he chooses to switch may be visible to the other players. For example, if he chooses to defect in Prisoner's Dilemma, the other player may sense his guilt. We show that by assuming translucent players, we can recover many of the regularities observed in human behavior in well-studied games such as Prisoner's Dilemma, Traveler's Dilemma, Bertrand Competition, and the Public Goods game.
Abstract:We propose a notion of continuous path for locally finite metric spaces, taking inspiration from the recent development of A-theory for locally finite connected graphs. We use this notion of continuity to derive an analogue in Z^2 of the Jordan curve theorem and to extend to a quite large class of locally finite metric spaces (containing all finite metric spaces) an inequality for the \ell^p-distortion of a metric space that has been recently proved by Pierre-Nicolas Jolissaint and Alain Valette for finite connected graphs.
Abstract:Over the years, numerous experiments have been accumulated to show that cooperation is not casual and depends on the payoffs of the game. These findings suggest that humans have attitude to cooperation by nature and the same person may act more or less cooperatively depending on the particular payoffs. In other words, people do not act a priori as single agents, but they forecast how the game would be played if they formed coalitions and then they play according to their best forecast. In this paper we formalize this idea and we define a new solution concept for one-shot normal form games. We prove that this \emph{cooperative equilibrium} exists for all finite games and it explains a number of different experimental findings, such as (1) the rate of cooperation in the Prisoner's dilemma depends on the cost-benefit ratio; (2) the rate of cooperation in the Traveler's dilemma depends on the bonus/penalty; (3) the rate of cooperation in the Publig Goods game depends on the pro-capite marginal return and on the numbers of players; (4) the rate of cooperation in the Bertrand competition depends on the number of players; (5) players tend to be fair in the bargaining problem; (6) players tend to be fair in the Ultimatum game; (7) players tend to be altruist in the Dictator game; (8) offers in the Ultimatum game are larger than offers in the Dictator game.
Abstract:The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighborhood); motivated by some applicative problems in Computer Science, we prove the analog of the Jordan curve theorem in $\mathbb Z^2$; motivated by a question asked during a lecture at Lausanne, we extend to any locally finite metric space a recent inequality of P.N.Jolissaint and Valette regarding the $\ell_p$-distortion.