Abstract:Intrusion detection for computer network systems has been becoming one of the most critical tasks for network administrators today. It has an important role for organizations, governments and our society due to the valuable resources hosted on computer networks. Traditional misuse detection strategies are unable to detect new and unknown intrusion types. In contrast, anomaly detection in network security aims to distinguish between illegal or malicious events and normal behavior of network systems. Anomaly detection can be considered as a classification problem where it builds models of normal network behavior, of which it uses to detect new patterns that significantly deviate from the model. Most of the current approaches on anomaly detection is based on the learning of normal behavior and anomalous actions. They do not include memory that is they do not take into account previous events classify new ones. In this paper, we propose a one class collective anomaly detection model based on neural network learning. Normally a Long Short Term Memory Recurrent Neural Network (LSTM RNN) is trained only on normal data, and it is capable of predicting several time steps ahead of an input. In our approach, a LSTM RNN is trained on normal time series data before performing a prediction for each time step. Instead of considering each time-step separately, the observation of prediction errors from a certain number of time-steps is now proposed as a new idea for detecting collective anomalies. The prediction errors of a certain number of the latest time-steps above a threshold will indicate a collective anomaly. The model is evaluated on a time series version of the KDD 1999 dataset. The experiments demonstrate that the proposed model is capable to detect collective anomaly efficiently
Abstract:Credit card fraud detection based on machine learning has recently attracted considerable interest from the research community. One of the most important tasks in this area is the ability of classifiers to handle the imbalance in credit card data. In this scenario, classifiers tend to yield poor accuracy on the fraud class (minority class) despite realizing high overall accuracy. This is due to the influence of the majority class on traditional training criteria. In this paper, we aim to apply genetic programming to address this issue by adapting existing fitness functions. We examine two fitness functions from previous studies and develop two new fitness functions to evolve GP classifier with superior accuracy on the minority class and overall. Two UCI credit card datasets are used to evaluate the effectiveness of the proposed fitness functions. The results demonstrate that the proposed fitness functions augment GP classifiers, encouraging fitter solutions on both the minority and the majority classes.
Abstract:Intrusion detection for computer network systems becomes one of the most critical tasks for network administrators today. It has an important role for organizations, governments and our society due to its valuable resources on computer networks. Traditional misuse detection strategies are unable to detect new and unknown intrusion. Besides, anomaly detection in network security is aim to distinguish between illegal or malicious events and normal behavior of network systems. Anomaly detection can be considered as a classification problem where it builds models of normal network behavior, which it uses to detect new patterns that significantly deviate from the model. Most of the cur- rent research on anomaly detection is based on the learning of normally and anomaly behaviors. They do not take into account the previous, re- cent events to detect the new incoming one. In this paper, we propose a real time collective anomaly detection model based on neural network learning and feature operating. Normally a Long Short Term Memory Recurrent Neural Network (LSTM RNN) is trained only on normal data and it is capable of predicting several time steps ahead of an input. In our approach, a LSTM RNN is trained with normal time series data before performing a live prediction for each time step. Instead of considering each time step separately, the observation of prediction errors from a certain number of time steps is now proposed as a new idea for detecting collective anomalies. The prediction errors from a number of the latest time steps above a threshold will indicate a collective anomaly. The model is built on a time series version of the KDD 1999 dataset. The experiments demonstrate that it is possible to offer reliable and efficient for collective anomaly detection.