Abstract:Chord recognition serves as a critical task in music information retrieval due to the abstract and descriptive nature of chords in music analysis. While audio chord recognition systems have achieved significant accuracy for small vocabularies (e.g., major/minor chords), large-vocabulary chord recognition remains a challenging problem. This complexity also arises from the inherent long-tail distribution of chords, where rare chord types are underrepresented in most datasets, leading to insufficient training samples. Effective chord recognition requires leveraging contextual information from audio sequences, yet existing models, such as combinations of convolutional neural networks, bidirectional long short-term memory networks, and bidirectional transformers, face limitations in capturing long-term dependencies and exhibit suboptimal performance on large-vocabulary chord recognition tasks. This work proposes ChordFormer, a novel conformer-based architecture designed to tackle structural chord recognition (e.g., triads, bass, sevenths) for large vocabularies. ChordFormer leverages conformer blocks that integrate convolutional neural networks with transformers, thus enabling the model to capture both local patterns and global dependencies effectively. By addressing challenges such as class imbalance through a reweighted loss function and structured chord representations, ChordFormer outperforms state-of-the-art models, achieving a 2% improvement in frame-wise accuracy and a 6% increase in class-wise accuracy on large-vocabulary chord datasets. Furthermore, ChordFormer excels in handling class imbalance, providing robust and balanced recognition across chord types. This approach bridges the gap between theoretical music knowledge and practical applications, advancing the field of large-vocabulary chord recognition.
Abstract:The leaf area index determines crop health and growth. Traditional methods for calculating it are time-consuming, destructive, costly, and limited to a scale. In this study, we automate the index estimation method using drone image data of grapevine plants and a machine learning model. Traditional feature extraction and deep learning methods are used to obtain helpful information from the data and enhance the performance of the different machine learning models employed for the leaf area index prediction. The results showed that deep learning based feature extraction is more effective than traditional methods. The new approach is a significant improvement over old methods, offering a faster, non-destructive, and cost-effective leaf area index calculation, which enhances precision agriculture practices.
Abstract:Progressive digitalization is changing the game of many industrial sectors. Focus-ing on product quality the main profitability driver of this so-called Industry 4.0 will be the horizontal integration of information over the complete supply chain. Therefore, the European RFCS project 'Quality4.0' aims in developing an adap-tive platform, which releases decisions on product quality and provides tailored information of high reliability that can be individually exchanged with customers. In this context Machine Learning will be used to detect outliers in the quality data. This paper discusses the intermediate project results and the concepts developed so far for this horizontal integration of quality information.