Abstract:The cost and complexity of financial crime compliance (FCC) continue to rise, often without measurable improvements in effectiveness. While AI offers potential, most solutions remain opaque and poorly aligned with regulatory expectations. This paper presents the design and deployment of an agentic AI system for FCC in digitally native financial platforms. Developed through an Action Design Research (ADR) process with a fintech firm and regulatory stakeholders, the system automates onboarding, monitoring, investigation, and reporting, emphasizing explainability, traceability, and compliance-by-design. Using artifact-centric modeling, it assigns clearly bounded roles to autonomous agents and enables task-specific model routing and audit logging. The contribution includes a reference architecture, a real-world prototype, and insights into how Agentic AI can reconfigure FCC workflows under regulatory constraints. Our findings extend IS literature on AI-enabled compliance by demonstrating how automation, when embedded within accountable governance structures, can support transparency and institutional trust in high-stakes, regulated environments.
Abstract:Multi-modal models require aligned, shared embedding spaces. However, common CLIP-based approaches need large amounts of samples and do not natively support 3D or tabular data, both of which are crucial in the medical domain. To address these issues, we revisit CLIP-style alignment by training a domain-specific 3D foundation model as an image encoder and demonstrate that modality alignment is feasible with only 62 MRI scans. Our approach is enabled by a simple embedding accumulation strategy required for training in 3D, which scales the amount of negative pairs across batches in order to stabilize training. We perform a thorough evaluation of various design choices, including the choice of backbone and loss functions, and evaluate the proposed methodology on zero-shot classification and image-retrieval tasks. While zero-shot image-retrieval remains challenging, zero-shot classification results demonstrate that the proposed approach can meaningfully align the representations of 3D MRI with tabular data.