Abstract:We propose a novel redaction methodology that can be used to sanitize natural text data. Our new technique provides better privacy benefits than other state of the art techniques while maintaining lower redaction levels.
Abstract:In this paper we propose use of a k-anonymity-like approach for evaluating the privacy of redacted text. Given a piece of redacted text we use a state of the art transformer-based deep learning network to reconstruct the original text. This generates multiple full texts that are consistent with the redacted text, i.e. which are grammatical, have the same non-redacted words etc, and represents each of these using an embedding vector that captures sentence similarity. In this way we can estimate the number, diversity and quality of full text consistent with the redacted text and so evaluate privacy.